Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:On 2-fold covers of graphs
Avtorji:ID Feng, Yan-Quan (Avtor)
ID Kutnar, Klavdija (Avtor)
ID Malnič, Aleksander (Avtor)
ID Marušič, Dragan (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.jctb.2007.07.001
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:IAM - Inštitut Andrej Marušič
Opis:A regular covering projection :˜XX of connected graphs is G-admissible if G lifts along . Denote by ˜G the lifted group, and let CT() be the group of covering transformations. The projection is called G-split whenever the extension ▫{\mathrm{CT}}(\wp) \to \tilde{G} \to G▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that G is transitive on X, a G-split cover is said to be G-split-transitive if all complements ˜GG of CT() within ˜G are transitive on ˜X; it is said to be G-split-sectional whenever for each complement ˜G there exists a ˜G-invariant section of ; and it is called G-split-mixed otherwise. It is shown, when G is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no G-split-transitive 2-covers exist) when G is 1-regular or 4-regular. In all other cases, that is, if G is s-regular, s=2,3 or 5, a necessary and sufficient condition for the existence of a transitive complement ˜G is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form A12k+10 is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group G has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed.
Ključne besede:graph theory, graphs, cubic graphs, symmetric graphs, s-regular group, regular covering projection
Leto izida:2008
Št. strani:str. 324-341
Številčenje:Vol. 98, no. 2
PID:20.500.12556/RUP-2798 Povezava se odpre v novem oknu
ISSN:0095-8956
UDK:519.17
COBISS.SI-ID:2524887 Povezava se odpre v novem oknu
Datum objave v RUP:15.10.2013
Število ogledov:4798
Število prenosov:36
Metapodatki:XML DC-XML DC-RDF
:
FENG, Yan-Quan, KUTNAR, Klavdija, MALNIČ, Aleksander in MARUŠIČ, Dragan, 2008, On 2-fold covers of graphs. [na spletu]. 2008. Vol. 98, no. 2, p. 324–341. [Dostopano 25 april 2025]. Pridobljeno s: http://dx.doi.org/10.1016/j.jctb.2007.07.001
Kopiraj citat
  
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:teorija grafov, grafi, kubični grafi, simetrični grafi, s-regularna grupa, regularna krovna projekcija


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici