Naslov: | On 2-fold covers of graphs |
---|
Avtorji: | ID Feng, Yan-Quan (Avtor) ID Kutnar, Klavdija (Avtor) ID Malnič, Aleksander (Avtor) ID Marušič, Dragan (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.jctb.2007.07.001
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | A regular covering projection ℘:˜X→X of connected graphs is G-admissible if G lifts along ℘. Denote by ˜G the lifted group, and let CT(℘) be the group of covering transformations. The projection is called G-split whenever the extension ▫{\mathrm{CT}}(\wp) \to \tilde{G} \to G▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that G is transitive on X, a G-split cover is said to be G-split-transitive if all complements ˜G≅G of CT(℘) within ˜G are transitive on ˜X; it is said to be G-split-sectional whenever for each complement ˜G there exists a ˜G-invariant section of ℘; and it is called G-split-mixed otherwise. It is shown, when G is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no G-split-transitive 2-covers exist) when G is 1-regular or 4-regular. In all other cases, that is, if G is s-regular, s=2,3 or 5, a necessary and sufficient condition for the existence of a transitive complement ˜G is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form A12k+10 is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group G has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed. |
---|
Ključne besede: | graph theory, graphs, cubic graphs, symmetric graphs, s-regular group, regular covering projection |
---|
Leto izida: | 2008 |
---|
Št. strani: | str. 324-341 |
---|
Številčenje: | Vol. 98, no. 2 |
---|
PID: | 20.500.12556/RUP-2798  |
---|
ISSN: | 0095-8956 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 2524887  |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4798 |
---|
Število prenosov: | 36 |
---|
Metapodatki: |  |
---|
:
|
FENG, Yan-Quan, KUTNAR, Klavdija, MALNIČ, Aleksander in MARUŠIČ, Dragan, 2008, On 2-fold covers of graphs. [na spletu]. 2008. Vol. 98, no. 2, p. 324–341. [Dostopano 25 april 2025]. Pridobljeno s: http://dx.doi.org/10.1016/j.jctb.2007.07.001
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |