Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Machine learning helps physicians in diagnosing of mitral valve prolapse
Avtorji:ID Povalej Bržan, Petra (Avtor)
ID Lenič, Mitja (Avtor)
ID Zorman, Milan (Avtor)
ID Kokol, Peter (Avtor)
ID Lhotska, Lenka (Avtor)
ID Pišot, Rado (Avtor)
Datoteke:URL http://www.hi-europe.info/files/2003/mitralvalveprolapse.pdf
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:UPR - Univerza na Primorskem
Opis:In this paper we present a multimethod approach for induction of a specific class of classifiers, which can assist physicians in medical diagnosing in the case of mitral valve prolapse. Mitral valve prolapse is one of the most controversial prevalent cardiac condition and may affect up to ten percent of the population and in the worst case results in sudden death. MultiVeDec is a general framework enabling researchers to generate various intelligent tools based on machine learning. In this paper we focused on various decision tree methods, which are capable of extracting knowledge in a form closer to human perception, a feature that is very important in medical field. The experiment included classifiers with various classical single method approaches, evolutionary approaches, hybrid approaches and also our newest multimethod approach. The main concern of the latest approach is to find a way to enable dynamic combination of methodologies to the somehow quasi unified knowledge representation. The proposed multimethod approach was capable to outperform all other tested approaches by producing classifier for diagnosing mitral valve prolapse with the highest overall and average class accuracy. More importantly, it was also capable to find some new knowledge important in diagnosing of mitral valve prolapse.
Leto izida:2003
Št. strani:8 str.
Številčenje:29/10
PID:20.500.12556/RUP-3976 Povezava se odpre v novem oknu
UDK:616.12-084:004
COBISS.SI-ID:607187 Povezava se odpre v novem oknu
Datum objave v RUP:15.10.2013
Število ogledov:3553
Število prenosov:45
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici